Branch to Grafana

This page provides you with instructions on how to extract data from Branch and analyze it in Grafana. (If the mechanics of extracting data from Branch seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Branch?

Branch Metrics lets businesses generate deep links they can use to track conversions and user engagement on web and mobile transactions. It provides a business analytics dashboard to surface user behavior data.

What is Grafana?

Grafana is an open source platform for time series analytics. It can run on-premises on all major operating systems or be hosted by Grafana Labs via GrafanaCloud. Grafana allows users to create, explore, and share dashboards to query, visualize, and alert on data.

Getting data out of Branch

Branch exposes data for things like install, open, clicks, and web session start through webhooks to user-defined HTTP POST callbacks. You can add a webhook through the Branch dashboard.

Sample Branch data

Branch exchanges data in JSON format. Here’s an example of the data returned for a clicks endpoint:

POST
User-agent: Branch Metrics API
Content-Type: application/json
{
    click_id: a unique identifier,
    event: 'click',
    event_timestamp: 'link click timestamp',
    os: 'iOS' | 'Android',
    os_version: 'the OS version',
    metadata: {
        ip: 'click IP',
        userAgent: 'click UA',
        browser: 'browser',
        browser_version: 'browser version',
        brand: 'phone brand',
        model: 'phone model',
        os: 'browser OS',
        os_version: 'OS version'
    },
    query: { any query parameters appended to the link },
    link_data: { link data dictionary - see below }
}

// link data dictionary example
{
    branch_id: 'unique identifier for unique link',
    date_ms: 'link creation date with millisecond',
    date_sec: 'link creation date with second',
    date: 'link creation date',
    domain: 'domain label',
    data: {
        +url: the Branch link,
        ... other deep link data
    },
    campaign: 'campaign label',
    feature: 'feature label',
    channel: 'channel label'
    tags: [tags array],
    stage: 'stage label',
}

Preparing Branch data

If you don’t already have a data structure in which to store the data you retrieve, you’ll have to create a schema for your data tables. Then, for each value in the response, you’ll need to identify a predefined datatype (INTEGER, DATETIME, etc.) and build a table that can receive them. Branch's documentation should tell you what fields are provided by each endpoint, along with their corresponding datatypes.

Complicating things is the fact that the records retrieved from the source may not always be "flat" – some of the objects may actually be lists. This means you’ll likely have to create additional tables to capture the unpredictable cardinality in each record.

Loading data into Grafana

Analyzing data in Grafana requires putting it into a format that Grafana can read. Grafana natively supports nine data sources, and offers plugins that provide access to more than 50 more. Generally, it's a good idea to move all your data into a data warehouse for analysis. MySQL, Microsoft SQL Server, and PostgreSQL are among the supported data sources, and because Amazon Redshift is built on PostgreSQL and Panoply is built on Redshift, those popular data warehouses are also supported. However, Snowflake and Google BigQuery are not currently supported.

Analyzing data in Grafana

Grafana provides a getting started guide that walks new users through the process of creating panels and dashboards. Panel data is powered by queries you build in Grafana's Query Editor. You can create graphs with as many metrics and series as you want. You can use variable strings within panel configuration to create template dashboards. Time ranges generally apply to an entire dashboard, but you can override them for individual panels.

Keeping Branch data up to date

Once you’ve set up the webhooks you want and have begun collecting data, you can relax – as long as everything continues to work correctly. You’ll have to keep an eye out for any changes to Branch’s webhooks implementation.

From Branch to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing Branch data in Grafana is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Branch to Redshift, Branch to BigQuery, Branch to Azure SQL Data Warehouse, Branch to PostgreSQL, Branch to Panoply, and Branch to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to move data from Branch to Grafana automatically. With just a few clicks, Stitch starts extracting your Branch data via the API, structuring it in a way that is optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Grafana.